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Attractive electron correlations due to an electron-vibron interaction can overcome the direct Coulomb
repulsion of polarons in deformable molecular quantum dots �MQDs�. If it happens, a switching appears in the
I-V characteristics of the degenerate nonadiabatic molecular bridges weakly coupled with electrodes providing
a route to ultrafast “memristors” �memory resistors� as the basis for future oscillators, amplifiers and other
important circuit elements. Here, we extend our theory of polaronic memristors to adiabatic MQDs strongly
coupled with leads to show that the degeneracy of MQD �or multilevel energy structure� along with the
polaron-polaron attraction is a vital ingredient of its switching behavior in the strong-coupling regime as well.
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I. INTRODUCTION

Different nanosize devices are being proposed and
investigated1–3 that exhibit some kind of current “switching”
behavior,4,5 “negative differential resistance,” and
“memory.”6 There is currently a surge of interest in various
systems showing memristor behavior �see, for example, Ref.
7 and references therein� that can potentially be used for
resistive random access memories. The practical significance
of determining a precise microscopic mechanism of such a
behavior is difficult to overestimate.

Polarons—electrons strongly coupled with lattice vibra-
tions �phonons or vibrons�—play a key role in the transport
and optical properties of many systems of reduced dimension
and dimensionality.8–11 They may provide an almost instan-
taneous switching mechanism ��tens of THz�,12 when a
bistable current state of vibrating nanocircuits appears due to
attractive electron-electron correlations �“anti-Coulomb
blockade” of the insulating state13,14�, if MQD is many-fold
degenerate. Later on Galperin et al.15 argued, without dis-
cussing the discrepancies with the prior work,12 that even a
nondegenerate electronic level coupled to a single vibrational
mode produces a hysteretic I-V curve, a current switching,
and a negative differential resistance. We have explicitly cal-
culated I-V curves of the nondegenerate �or twofold degen-
erate� MQDs �Ref. 16� to show that these findings originate
in an erroneous mean-field approximation �MFA� used in
Ref. 15, which replaces the electron occupation number op-
erator in electron-vibron interaction �EVI� by an average
population of the molecular level. The correlations beyond
this MFA are crucial to obtain correct results as explained in
detail in Ref. 16.

The exact analytical solution of the problem fully ac-
counting for the strong EVI and polaron-polaron correlations
in MQD has been found by us at any temperature in the
weak molecular-lead coupling limit, where the inverse life-
time, � /�, of a polaron on the dot is small compared with the
characteristic vibron frequency, � /���0 �Ref. 12� �nonadia-
batic regime�. Here, we extend our theory of polaronic mem-
ristors to MQDs strongly coupled with the leads, where �
���0 �adiabatic regime�.

II. MOLECULAR QUANTUM DOT: EXACT SOLUTION IN
NONADIBATIC REGIME

We have defined MQD by a molecular Hamiltonian,
which includes the Coulomb repulsion, UC, and the electron-
vibron interaction12

Hm = �
�

��n̂� +
1

2 �
����

U���
C n̂�n̂�� + �

�,q
�qn̂����qdq + H.c.�

+ �
q

�q�dq
†dq + 1/2� . �1�

Here �� are the energy levels of a rigid molecule, n̂�=c�
† c� is

the molecular occupation number operator, dq annihilates vi-
bron, �q is the vibron frequency, and ��q is the EVI constant
�q enumerates the vibron modes and we take �=kB=1 here
and below�. This Hamiltonian conserves the occupation
numbers of molecular states n�. When the molecule is at-
tached to two �for simplicity symmetric� leads, the full
Hamiltonian H=Hm+Hl+��,ktk�c�

† �ak+bk�+H.c. includes
the hopping to the leads, and the Hamiltonian of the leads
Hl=�k	k�ak

†ak+bk
†bk�, where ak and bk annihilate the electron

in the left and right electrodes, respectively.
With some conventional assumptions, such as energy-

independent width �=2
�ktk�
2 ��E−	k� and quasiequilibrium

electron distributions in the leads, the current through MQD
is given by the Landauer-type expression �or by the Fermi
golden rule� as12

I�V� = I0�
−�

�

dE�f1�E� − f2�E���E� , �2�

allowing for a transparent analysis of the essential physics of
the switching phenomenon. Here, I0=e�, f1�2��E�
=1 / �exp���E+��eV /2��+1	 is the electron distribution
function in �1� left and �2� right metallic leads, respectively,
�=1 /T is the inverse temperature, � is the position of the
lowest unoccupied molecular level with respect to the Fermi
level at V=0, and V is the voltage drop across the MQD.

The molecular density of states �DOS� �E�
=−�1 /
���Im G�

R�E� generally depends on all interactions
and molecule-lead hopping integrals as determined by the
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Fourier component G�
R�E� of the retarded Green’s function

�GF� G�
R�t�=−i��t�
c��t�c�

† +c�
† c��t��, where c��t� is the

Heisenberg annihilation operator. To calculate �E�, one can
neglect molecule-lead coupling in the weak-coupling regime
while keeping all orders of the Coulomb repulsion and EVI
by means of the canonical displacement transformation of
the molecular Hamiltonian �1�. In particular, assuming EVI
with a single vibronic mode, �q=�0 and the coupling ��q

=�, and constant Coulomb integrals, U���
C =Vc, one obtains

for a d-fold degenerate single-level dot12

�E� = Zd�
r=0

d−1

Zr�n��
l=0

�

Il�	�

� �e��0l/2��1 − n���E − rU − l�0� + n��E − rU + l�0��

+ �1 − �l0�e−��0l/2�n��E − rU − l�0�

+ �1 − n���E − rU + l�0��	 . �3�

Here Z=exp�−���2coth����0 /2�� accounts for a familiar po-
laronic renormalization of the hopping integrals, 	
= ���2 /sinh����0 /2�, Il�	� is the modified Bessel function,
and �lk is the Kroneker symbol �l ,k=0,1 ,2 , . . .�, and we take
the position of the level as zero, ��=0. The resulting
polaron-polaron interaction, U=Vc−2Ep, where Ep= ���2�0 is
the polaron level shift, comprises the Coulomb repulsion, Vc,
and the vibron-mediated attraction. An important feature of
DOS �Eq. �3�� is its nonlinear dependence on the occupation
number n of the degenerate molecular states owing to the
correlation side bands with the spectral weight Zr�n�= �d
−1� !nr�1−n�d−1−r / �r ! �d−1−r�!�. The DOS, Eq. �3�, con-
tains full information about all possible correlations in trans-
port, in particular, the vibron and correlation side bands. It is
derived by solving the finite system of coupled equations for
N-particle Green’s functions, as described in Ref. 12.

Equating incoming and outgoing numbers of electrons in
MQD per unit time, one obtains the self-consistent equation
for the molecular-state occupation number n as12

2nd =� dE�E��f1�E� + f2�E�� , �4�

which automatically satisfies 0�n�1. In particular, for the
nondegenerate MQD �d=1� and T=0 K the result is

n =
b0

+

2 + b0
+ − a0

+ �5�

and

I

I0
=

2b0
− + a0

−b0
+ − a0

+b0
−

2 + b0
+ − a0

+ . �6�

where a0
�=Z�l=0

� ����2l / l!����l�0−�+eV /2����l�0−�
−eV /2�� and b0

�=Z�l=0
� ����2l / l!����−l�0−�+eV /2����

−l�0−�−eV /2��. Here ��x�=1 if x�0 and zero otherwise.
The current is single valued, Fig. 1, with the familiar ladder
due to the phonon side bands.17 The double-degenerate level
d=2 provides more elementary processes for conductance
reflected in a larger number of steps on the phonon ladder in
comparison to d=1 case. However, the current remains also

single valued showing no switching behavior11,12 in the weak
molecular-lead coupling regime, contrary to the MFA of Ref.
15, which yields an artificial switching behavior for a non-
degenerate level, d=1, in this regime. The switching appears
only in I-Vs of many-fold degenerate dot when U�0 and the
temperature is low enough.12,13

III. ADIABATIC MQD: NONEQUILIBRIUM LINKED
CLUSTER EXPANSION

Let us now analyze an effect of the strong molecular-lead
coupling ���0 on the above results. When EVI is also large
���1�, it could not be treated perturbatively, so that one has
to sum up all diagrams of the perturbation expansion in pow-
ers of � to calculate GFs. As proposed in Ref. 18, this can be
done within a lowest-order nonequilibrium linked cluster ex-
pansion �NLCE�,19 which provides approximate resumma-
tion of the whole series for GFs as

G�t�  �
r=0

�

�2rWr�t� � G0�t�exp��2F�t�� . �7�

Here, G0�t� should be calculated without EVI �i.e., with
��q=0 in Eq. �1�� while F�t� is found using the lowest
�second�-order diagrams F�t�=G0

−1�t�W1�t�. Calculating zero
G0�t� and second order �in �� W1�t� is a textbook exercise for
the nondegenerate molecular level. Using equations of mo-

tion, iċ= t�k�ak+bk� and iȧk=	kak+ tc, iḃk=	kbk+ tc one can
readily find the Fourier component of the retarded GF of the
rigid nondegenerate dot as G0

R�E�= �E− i��−1 and a
Lorentzian-type zero-order molecular DOS

0�E� =
1




�

E2 + �2 . �8�

Substituting Eq. �8� into Eq. �2� yields the current through a

0.5 1.0 1.5 2.0
eV/2∆

0.0

0.1

0.2

0.3

0.4

0.5

n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

I/I
0

Current

Occupation number

d=1

T=0
γ2=11/13
ω0/∆=0.2

FIG. 1. Current-voltage characteristic of the nondegenerate �d
=1� MQD weakly coupled to the leads at T=0 K, �0 /�=0.2, and
�2=11 /13. There is the vibron ladder in I-V but no hysteresis.
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rigid bridge as

I�0�

I0
=

1



�arctan� eV/2 − �

�
� + arctan� eV/2 + �

�
�� , �9�

shown in Fig. 2�a� at T=0 K for a few inverse lifetimes.
Using the zero-order lesser, G0

��t�� in0 exp�−��t��, and
greater, G0

��t��−i�1−n0�exp�−��t��, GFs �Ref. 18� one can
readily calculate the second-order contribution W1�t�. Here
n0= �f1�0�+ f2�0�� /2 is the zero-order population of the mo-
lecular level. Then applying NLCE, Eq. �7�, one gets the
retarded GF for the strong molecular-lead coupling, ���0,
summing infinite number of EVI diagrams �see for details
Refs. 18 and 19�, GR�E�= �E+2n0Ep− i��−1, and the molecu-
lar DOS

�E� =
1




�

�E + 2n0Ep�2 + �2 . �10�

Using Eq. �10� in Eqs. �4� and �2� leads to

n =
1

2

�
 + arctan� eV/2 − �̃

�
� − arctan� eV/2 + �̃

�
��

�11�

for the molecular-state population and

I

I0
=

1



�arctan� eV/2 − �̃

�
� + arctan� eV/2 + �̃

�
�� �12�

for the current, respectively, with �̃�−2n0Ep=�
−Ep��eV /2−�� at low temperatures, T��. The level popu-
lation, Eq. �11�, of the nondegenerate dot strongly coupled to
the leads, and the current, Eq. �12�, Fig. 2�b� remain single-
valued showing neither switching nor negative differential
resistance, similar to the weak molecular-lead coupling, Fig.
1. Taking into account the coupling with the leads beyond the
second order washes out the vibron ladder in the I-V charac-
teristics, so that EVI affects the I-Vs only marginally com-
pared with the rigid dot, Fig. 2, in the strong-coupling �adia-
batic� regime.

As we have shown earlier16 the MFA of Ref. 15 replacing
the occupation number operator n̂ in EVI by the average
population n erroneously leads to a nonlinear equation for n

and a spurious switching of the nondegenerate dot, which
has no physical meaning. The authors of Ref. 18 have con-
firmed our conclusion for the weak molecular-lead coupling
but argued using NLCE that their MFA works well in the
strong-coupling regime so that the nondegenerate adiabatic
dot is multistable contrary to our present result, Fig. 2�b�.
The discrepancy originates in an erroneous replacement of
the zero-order occupation n0 in G0

�,��t�, GR�E�, and as the
result in Eq. �10� by the exact n leading to double counting
of EVI diagrams in Ref. 18. In fact, multiple solutions for the
steady-state population of the nondegenerate dot found in
Refs. 15 and 18 are artifacts of MFA and misapplication of
NLCE, respectively. Other studies20 find no hysteresis in
non�or twofold-�degenerate dots either.

IV. SWITCHING OF ADIABATIC QUANTUM DOT

The physical mechanism of the switching is provided by
an attraction of two polarons in a multiply degenerate
MQD,12–14 which is missing in the nondegenerate “polaron
model” of Refs. 15 and 18 due to the Pauli exclusion prin-
ciple.

Treating the polaron-polaron correlations in real multi-
level bridges and the molecular-lead coupling at the same
level of approximation is a challenging problem, which
might require numerical techniques.21,22 Since the vibron
ladders in I-V curves are washed out by the strong coupling
with the leads, Fig. 2�b�, we consider here an effect of the
molecular-lead coupling on the switching in the many-fold
degenerate �d�1� negative Hubbard U model of Ref. 13
allowing for a simple analytical solution

H =
1

2
U �

����

n̂�n̂�� + �
k

	k�ak
†ak + bk

†bk�

+ �
k,�

�tk��ak
† + bk

†�c� + H.c.� . �13�

For the many-fold degenerate dot, one can approximate the
exact two-body interaction in the Hamiltonian Eq. �13� by a
single-particle self-consistent Hartree-type potential as
1
2U�����n̂�n̂���U�����n̂�n��− 1

2U�����n�n��. Then, us-
ing equations of motions yields the DOS as in the nondegen-
erate rigid dot, Eq. �8�, but shifted in energy by the attraction
potential

�E� =
1




d�

�E − U�d − 1�n�2 + �2 . �14�

From Eq. �4�, the molecular-state population for T�� is

n =
1

2

�
 + arctan� eV/2 − � − 2Ũn

�
�

− arctan� eV/2 + � + 2Ũn

�
�� , �15�

where Ũ=U�d−1� /2.
For �=0, there are two stable solutions of Eq. �15�, n

=0 and n=0.5 in the voltage region of bistability, �− �Ũ�

FIG. 2. �Color online� Current-voltage characteristics of the
nondegenerate �d=1� rigid bridge �a� T=0 K, and �b� of the non-
degenerate adiabatic ��0��� molecular bridge with the polaron
level shift Ep=� /2 for different couplings to the leads, � /�=0.01
�the steepest curve�, 0.1, 0.2, and 0.5.
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�eV /2��, and only one solution, n=0.5 for eV /2��, and

one solution n=0 for eV /2��− �Ũ�. The coupling with the
leads does not destroy the many-fold degenerate memristor
as long as � is less than some critical value, ���c, which is
small compared with �, Fig. 3. When ���, one can replace
the last arctan in Eq. �15� by 
 /2 and resolve this transcen-
dental equation with respect to the bias voltage as eV /2

��+2Ũn−� cot�2
n�. The boundary of bistability is found
from dV /dn=0, which yields the terminal value of the level

width �c= �Ũ� /
. The dot population and the current, found
from Eq. �2� using Eqs. �14� and �15� remain double valued
in the voltage region of bistability, Fig. 3, where both high-
current and low-current branches are stable, while the inter-
mediate branch with dn /dV�0, Fig. 3�a�, is unstable.13 Im-
portantly, the coupling narrows the voltage range of the
hysteresis loop but the transition from the low-�high�-current
branch to the high-�low�-current branch remains discontinu-
ous as long as ���c. The Hartree-type approximation for
the correlation potential is fully justified by the exact solu-
tion of Ref. 13 in the nonadibatic regime. More complicated
electron and vibron-energy spectra of MQD should have no
qualitative effect on the switching as soon as the character-

istic attraction �Ũ� remains larger than the widths of both
spectra.13

Different from the nondegenerate and twofold-degenerate
dots, the rate equation for a multidegenerate dot, d�2, has
multiple physical roots in a certain voltage range showing
hysteretic behavior due to attractive correlations between
different electronic states of MQD. The origin of the bista-
bility is illustrated in Fig. 4. When the current flows through
MQD, the “highest occupied molecular orbital-lowest unoc-
cupied molecular orbital” �HOMO-LUMO� gap is renormal-
ized down to a lower value due to attractive correlations
between populated molecular levels, so the current-off volt-
age V1 turns out smaller than the current-on voltage V2.

V. CONCLUSION

The actual mechanisms of nanocircuit switching are of the
highest experimental and theoretical value. Further progress

will depend upon understanding of intrinsic mechanisms of
nanomemristors. Here, we have extended our multipolaron
theory of the current controlled switching mechanism, Fig. 4
to the adiabatic molecular-size bridges with the significant
coupling to the leads ����0�. The degenerate �or multi-
level� MQD shows the hysteretic memory, if the degeneracy
of the level �or the number of levels� is large enough, the
Coulomb repulsion is overscreened by EVI �Ref. 23� or by
any other attractive mechanism, and the coupling to the leads
is below the critical value, Fig. 3. Recent unbiased exact
diagonalization studies of the very similar Holstein-Hubbard
model22 show indeed that EVI can overcome the direct Cou-
lomb repulsion in MQD and the multilevel energy structure
of the deformable quantum dot is vital for the switching. The
time scale for the switching is the inverse vibron frequency
��tens of THz�. Importantly, the switching does not exist in
nondegenerate molecular dots neither weakly, Fig. 1, nor
strongly coupled to the leads, Fig. 2�b�, contrary to the
claims in Refs. 3, 15, and 18. In many-fold degenerate
MQDs, bistability is destroyed by a very strong coupling to

FIG. 3. �Color online� Steady-
state population n and the current
I / I0 of the many-fold degenerate
negative U dot at T=0 K with
different coupling to the leads and

the effective attraction Ũ=−� /2.

eV> 2∆∆∆∆

∆∆∆∆
eV< 2∆∆∆∆

∆∆∆∆- |U|

J=0

J=2n

no correlations with attractive
correlations

FIG. 4. �Color online� Schematic of energy levels of the mo-
lecular quantum dot under bias voltage V. MQD is assumed to be
fourfold degenerate �d=4�. Switching occurs in the voltage range

V1�V�V2 �eV1=2��− �Ũ�� and eV2=2�� due to a lowering of the
HOMO-LUMO gap by the attractive electron-electron potential U
in the current state J�0 �after Ref. 10�.
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the leads, ���c and/or at temperatures above some critical
value.12
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